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Atom Camera: Super-resolution imaging of an optical field 

with a single ultracold atom in an optical tweezers

Introduction  Super-resolution imaging
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System

Tweezers

Light pattern

Δx ~ 25 nm

Probe: single atom

“Atom camera”

 Scan the atom position → Image the light profile

852 nm

Measure the differential light shift with Ramsey interferometry

 Differential light shift: 

Clock transition:

Stretched transition:

Result
 Intensity profile: scalar light shift measurement  Polarization profile: vector light shift measurement

Phase unwrapping

Restoring the physical 

continuity of the phase

Target: tightly-focused gaussian beam: the polarization distribution is not homogeneous…!

Δ𝜙 = 2π × 0.0275 (Std.)

Signal ~ 2π × 5

➢ S/N ratio: ~ 200

Summary / Prospect

NA=0.75 

SLM1

SLM2

Light pattern

Atom trap + scan

EMCCD

xy

Hologram

Ellipticity vector

• Linear: |C| = 0

• Circular: C = 1(CCW), C = -1(CW)

:Normalized E-field

• Incident beam : linear along the x axis

• Focal plane (off-axis): 

→ Spatially varying elliptic polarization along the y axis  

 Apply the Raman sideband cooling to cool the 

atom in the motional ground state of the tweezers.

➢ Position/distribution of an atom

➢ Optical field

[E. Deist et al., PRL 128, 083201 (2022)]

[M. Drechsler et al., PRL 127, 143602 (2021)]

[S. Subhankar et al., 

PRX 9, 021002 (2019)]

[M. McDonalds et al., 

PRX 9, 021001 (2019)]

Resolution < λ/(2NA)

→ Beyond diffraction limit
Hamamatsu Photonics K.K.

SLM

Hologram

→ In situ imaging of the light pattern ?

Challenge!

High-NA, short-spacing array

    → Aberration, Interference

Light Pattern 

Aberration from 

imaging path

window

? Objective 

lens ↓ NA=0.75

IMS

Rydberg 

electron

Ultracold Rb atoms

Ultrafast pulsed 

excitation 

[M. Mizoguchi et al., PRL 124, 253201 (2020)]

[V. Bharti et al., arXiv: 2201.09590]

Optical lattice

[Y. Chew et al., arXiv: 2111.12314, in press]

142.24*84.111 cm

Trap depth

~ 10 MHz

Tightly-focused Gaussian beam

• Scan step: 100 nm

• N = 100 shots (~ 50shots w/ atom)

•

•

• Quantum projection noise

𝐶: Ramsey fringe contrast

𝑁: Number of data

➢ Gallery

→ Noise level ⇔ 0.6 µW/µm2

• Intensity of the light

for

polarizability

• Noise level

→ Quantum projection 

noise limited

➢ Resolution

• Largest gradient of Bfict

•

•

• Trap depth (scalar) = 330 kHz

Cold atom experiment: [J. D. Thompson et al., PRL 110, 133001 (2013); B. Albrecht et al., PRA 94, 061401(R) (2016); K.-P. Wang et al., Chin. Phys. Lett. 37, 044209 (2020)]

✓ Scanning microscopy with a single 87Rb atom

✓ The atom is cooled down to the motional ground state in the tweezers by the Raman 

sideband cooling.

✓ The resolution is beyond diffraction limit: consistent with the spread of the atom ~ 25 nm.

✓ The intensity / polarization of light is detected by the hyperfine spin in the atom with the 

Ramsey interferometry.

✓ Reduction of the data taking time: 1 min./px → multi-probe, non-destructive measurement

✓ Z-axis scanning for 3D imaging

✓ Hologram design for light patterns with sub-micron structure
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NA=0.75

→ Beyond diffraction limit 

For a gaussian beam,

Consistent with the probe size ~ 25 nm

: Width of the PSF =: “Resolution”

• Coherence time ~ 100 ms with XY-4 

(Clock transition)

[Y. Chew et al., arXiv: 2111.12314, in  press]

Optical tweezers

Top-down

Bottom-up

Arbitrary-shape array with spacing < 1 µm ?

→ New hologram design with Hamamatsu Photonics

Dynamical decoupling

to keep the coherence
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Raman 

sideband 

cooling

State

Prep. Light pattern

: Ellipticity 

Clock transition

Scalar light shift

→ Insensitive to

polarization

Stretched transition

Vector light shift

→ Sensitive to

polarization
Coma TEM01-like Short-spacing array

➢ Vector diffraction theory [B. Richards & E. Wolf, Proc. R. Soc. A 253, 358 (1959)]

• Vector light shift 

= Zeeman shift by “fictitious B-field”

Largest gradient of C :

for 10 MHz trap

TODO: quantum sensing,

• Diagnose light patterns

→ Precise beam shaping for 

- Microscopic quantum control

- Laser processing

 Measure the additional light shift with the hyperfine spin: quantum sensing 

[P. Salter et al., Light Sci. Appl. 8, 110 (2019).]

[P. Zupancic et al., Opt. 

Express 24, 13881 (2016)]

Scanning single-atom microscopy

http://www.megaprint.com/
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