# Ultrafast Quantum Simulator using Ultracold Rydberg-excited **Atomic Mott-insulator**

# V. Bharti<sup>1,\*</sup>, S. Sugawa<sup>1,2,\*</sup>, M. Mizoguchi<sup>1,\*</sup>, M. Kunimi<sup>1</sup>, V. S. Chauhan<sup>1</sup>, Y. Zhang<sup>1</sup>, S. de Léséleuc<sup>1,2</sup>, T. Tomita<sup>1,2</sup>, T. Franz<sup>3</sup>, M. Weidemüller<sup>3</sup>, and K. Ohmori<sup>1,2</sup>

<sup>1</sup> Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan <sup>2</sup> SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan

<sup>3</sup> Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany



#### Abstract

The ensemble of Rydberg atoms is a unique platform for quantum computation because of their special properties. In our research group, we are developing a novel approach for Rydberg-based quantum simulations and computations, where we use broadband pulsed lasers to excite <sup>87</sup>Rb atoms, in Bose-Einstein condensates (BEC), Mott-Insulator (MI) lattice and optical tweezers, to Rydberg states in a timescale of 10 to 100 picoseconds at the speed limit set by the Rydberg splitting.

In this poster, I will give the overview of our ultrafast quantum simulator in which we generate a strongly correlated ultracold Rydberg ensemble of <sup>87</sup>Rb atoms excited from an unity filling MI using broadband picosecond laser pulses. We observe and control its ultrafast many-body electron dynamics by performing the time-domain Ramsey interferometry with attosecond precision. I will also discuss the future prospects and outlook of our ultrafast quantum simulator.

Preprint: arXiv: 2201.09590 (2022), Related works: Nature Photon. 16, 724 (2022), Phys. Rev. Lett. 124, 253201 (2020), Nature Commun. 7, 13449 (2016), contact: vikas@ims.ac.jp \* These authors contributed equally to the work



## Ultrafast quantum simulator

Quantum simulation of

within a nanosecond

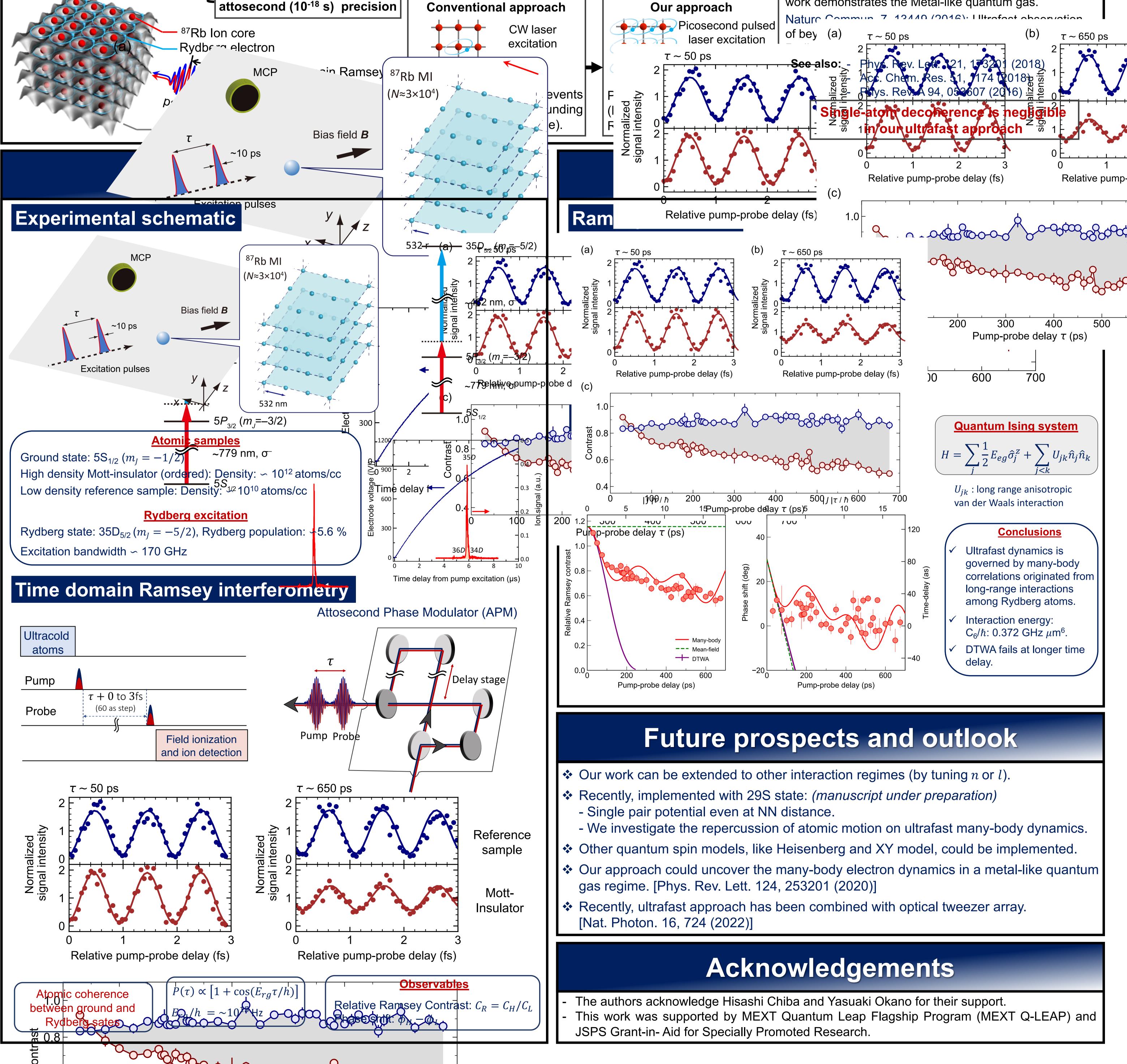
many-body electron dynamics

Ultracold Rydberg atoms

in an optical lattice

**Coherent control with** 

### Ultracold Rydberg atoms


#### Advantages of Rydberg atoms

- Strong interactions due to large dipole moments.
- High controllability of the strength and nature of interactions.
- Interactions can be actively switched on and off.

## Important works

Nature Photon. 16, 724 (2022): Ultrafast energy exchange between two Rydberg atoms in optical tweezers. This work executes an ultrafast two-qubit gate.

Phys. Rev. Lett. 124, 253201 (2020): Ultrafast creation of Rydberg electrons in atomic BEC and MI lattice. This work demonstrates the Metal-like quantum gas.

