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Rydberg quantum simulator

◼Strong long-range 

interaction (few μm)

◼Tunability of 

interaction strength

◼Rydberg blockade
[S. de Léséleuc et al., 

 Science 365, 775-780 (2019)]1
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A promising platform for quantum computing

Final bell state fidelity as a number 

of 2-qubit gates applied3
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Experimental setup

◼Microscope with high-NA 

objective lenses

◼Large atomic arrays with 

optical tweezers

◼Spatial Light modulator (SLM).

◼Observe and control the 

atoms with single-site 

resolution

◼Raman sideband cooling and 

spectroscopy

Optical tweezers description
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𝑛 times

Ultra fast 2-qubits gates 

when Δ𝑥 is minimum

◼Multiple squeeze unsqueeze for multiple 2-qubits 

gates

◼A high squeezing-unsqueezing fidelity is required 

to allow for a good 2-qubits gate fidelity

◼Fidelity is measured with Raman spectroscopy. 

Adiabatic transition amplitudes give access to 

Δ𝑛 = −1 and Δ𝑛 = +1 transitions probabilities : 

𝐹𝑦 = 𝜓𝑦 0
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𝑅

Traps anharmonicity

◼To recover the 

ground state, the 

tweezer must be 

turned off when 

the squeezed 

state is in the 

position symmetric 

to the one after 

squeezing

◼Far from the tweezer center, the trap is anharmonic:

▪ Higher eigenstates of the trap correspond to lower energies. 

Their phase evolve more slowly than in the harmonic case

▪ In the phase space 

     representation, points 

     far from center rotate 

     more slowly

Ground state fidelity for a 2𝜇𝑠 

and a 4𝜇𝑠 squeezed state:

◼The Gaussian potential can be 

approximated by a harmonic one

◼We can ignore the z axis because 

𝜔𝑧 ≈ 30kHz (𝑧𝑅 ≈ 1.7 𝜇𝑚). Moreover, 

Δ𝑧 is a second order term in Δ𝑅

Generate motional squeeze states

[H. Bernien et al., 

 Nature 551, 579-584 (2017)]2

Ising quantum spin model simulation

◼The more a state is squeezed, the more it explores 

anharmonic parts of the trap and the more it gets deformed.

▪ Squeezing quality decreases with time (see )

▪ It makes it impossible to recover the ground state (see )
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Tweezer shape 

homogenization

◼Squeezed states from 

different atoms and 

axis evolve at different 

frequencies

◼They cannot be 

unsqueezed all 

together

Traps Anisotropy and inhomogeneity

Interaction area

Ultrafast Föster oscillation5

Raman sideband 

cooling

Quantum fluctuations 

Thermal atoms

Thermal fluctuations

𝑇 = 50μK 

Squeezed

Squeezing

Squeezed state

Ultra cold atoms

𝜓 = |0⟩

◼Ultrafast gates on Rubidium

Rydberg atoms1 (6.5 ns)

◼Strong dipole-dipole interaction 

𝐶3 ≈ 1 GHz ∙ μm3 
 

◼Direct interaction gate (ns)

◼Requires control of inter atomic 

distance

𝑛 = 0
𝑛 = 1
𝑛 = 2

ℏ𝜔𝑟

...

𝑈0 = 14 MHz

◼Probability to have 𝑛 < 10  is 

greater than 0.99 with Δ𝑥 divided 

by a factor of 2

◼The harmonic approximation is 

valid for squeezed states

◼Atoms should remain in the trap 

as high levels are not populated
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Gaussian trap and its approximations 

energy levels

𝑈 𝑥 = −𝑈0 exp −2𝑥2/𝑊0
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with 𝜔𝑟 =
4𝑈0

𝑚𝑊0
2 ∼ 120 kHz 𝑊0 ∼ 0.6𝜇𝑚 ,

𝜖 =
𝜔𝑟ℏ

8𝑈0
 ∼ 2.10−3 and 𝑥0 =

ℏ

2𝑚𝜔𝑟
∼ 20nm

◼Trap frequencies are

 homogenized and equalized by optimizing the SLM phase pattern

◼Atoms minimum position spreads are then reached 

at the same time (along a given axis)

Ԧ𝑎 = ∇Uharmonic

Ԧ𝑎 = ∇Ugaussian
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Rotating time 𝑡2𝑡1 ∼ 2μs ∼ 20 − 30μs

RecaptureSqueezing Release

𝑃𝑋

𝜔𝑥

𝑃𝑋𝑃𝑋 𝑃𝑋 𝑃𝑋

𝑃 𝑟𝑒𝑐𝑎𝑝 ∼ 1
𝑃 𝑟𝑒𝑐𝑎𝑝 ∼ 0

T
ra

p
 f
re

q
u

e
n

c
ie

s
 (

k
H

z
)

Recapture rate for different states 

after release for a variable time 

◼Tweezer beam linear polarization 

along x axis induces asymmetry

◼Squeezed states in the x-direction 

and y-direction do not oscillate at 

the same frequencies

◼Global spread in 𝑟 or 𝑝 shows 

beatings

Theoretical spread in 𝑥 and 𝑝 in 

one given direction

For different rotating times 𝑡2 the 

atoms are released and recaptured

Calculated squeezed state 

wavefunction (𝛥𝑥 = 𝛥𝑥0/2)

Calculated squeezed state distribution over 

Hamiltonian eigenstates (𝛥𝑥 = 𝛥𝑥0/2)
Anisotropic trap

𝑃𝑌

𝑌

Ground state

Squeezed state

◼Turning off 

and on the 

trap squeeze 

the motional

state

◼Long coherence 

times (one second

 for 𝑇1)

◼Gate fidelity improvements3

◼Good scalability (800+ 

atoms achieved)

◼Squeezing to overcome Heisenberg uncertainty 

and increase 2-qubits gate fidelity (∼ 𝟐%)

◼Already used by ion-trapped platforms, metrology, 

gravitational waves, in optical lattice6 ….

 

◼Squeezed states for optical tweezer ?

◼Squeezing factor goal : 𝑺 = 𝟐 → 𝟔 dB 

Rydberg 

state lifetime
Binding 

energy

Rydberg 

state splitting

blockade

Fast8

cw excitation

dip-dippulsed excitation

Ultrafast Slow

100 μs10 μs1 μs100 ns10 ns1 ns100 ps10 ps1 ps 1 ms

Atoms motion

Trap frequencies for 

each different atom

𝜔𝑥

𝜔𝑦

Atom number

Wigner representation of a 4μs squeezed state in an anharmonic trap

𝑝
/𝑝

𝑂

𝐵

𝑅
𝜔𝑦

𝜔𝑥

Ultrafast Rydberg 
experiments:

◼In the phase space representation 

(Wigner distribution) upper points 

have more momentum. Therefore, 

they go further

◼Squeezed states then rotate at 

trap frequency and are alternatively 

squeezed in position and 

momentum

Position spread for a 2𝜇𝑠 

and a 4𝜇𝑠 squeezed state:

◼Take SPAM errors into account for more 

accurate fidelity measurement

◼Bring the 𝜔𝑥 and 𝜔𝑦 trap frequencies 

together with apodization technic to 

increase fidelities and compare with 

theory (below)

◼Study the influence of trap depth on 

anharmonicity

◼Measure ultrafast 2-qubits gates 

improvement with squeezed states

◼Quantum amplification to measure 

Rydberg attraction kick

◼Determine the experimental maximum 

squeezing factor that can be reached with 

99% fidelity. Compare with theory (below)
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