Development of a Laser System for Rubidium Neutral-Atom Quantum Computers

Seiya Shinkawa^{1,2}, Kritsana Srakaew¹, Omar Kecir^{1,2}, Aito Tanaka^{1,2}, Yeelai Chew¹, Jorge Mauricio^{1,2}, Genki Watanabe^{1,2}, Harumu Odagawa^{1,2}, Valentin Anthoine-Milhomme¹, Giorgio Micaglio¹, Gaetan membrez¹,Takafumi Tomita^{1,2}, Sylvain de Léséleuc^{1,3}, and Kenji Ohmori^{1,2}

¹Institute for Molecular Science, National Institutes of Natural Sciences, Japan. ²SOKENDAI (The Graduate University for AdvancedStudies), Japan. ³RIKEN, Center for Quantum Computation, Wako.

National Institutes of Natural Sciences Institute for Molecular Science

Introduction

Neutral-atom quantum computer

- Perfect and identical qubits
- Scalability up to 10k
- Long coherent time
- Controllable/reconfigurable interactions

moonshot _____

Cold-atom QC

(Neutral-atom)

D. Bluvstein *et al.*, Nature **626**, 58 (2023)
G. Radnaev *et al.*, arXiv:2408.08288 (2025)
J. W. Lis *et al.*, Phys. Rev. X 13, 041035 (2025)

State Preparation & Measurement ____

= 2D/3D-Magneto Optical Trap

- Cooling and trapping of Rb atoms using counter-propagating beams and magnetic gradients (~300 µK)
- 2D-MOT captures hot atoms and forms atomic beam
- The atomic beam delivers atoms to the **3D-MOT** in a separate vacuum chamber.
- High flux, low background, and clean trapping

Molasses Cooling

■ Sub-Doppler cooling via polarization gradients (~10 µK)

Optical Pumping

 Atoms are polarized into a specific Zeeman sublevel using circular or linear polarized light.
 Crucial for state preparation, qubit initialization, and selective detection.

2DMOT 2025-07-07

F=2

g_F=1/2 (0.70 MHz/G)

F=1

g_F= -1/2 (-0.70 MHz/G)

6.834 GHz

384.230 THz

12 816.549 cm

1 589 eV

5² S_{1/2}

2.563 GH

4.271 GHz

Quantum Processing Unit (QPU)

Rubidium optical tweezer array

- Designed with Infleqtion (since 2023)
- Ultralow vacuum

005

nm

420

5S_{1/2}

5P_{3/2}

6.8GHz

 $R(\theta, \varphi)$

11)

- ⁸⁷Rb atoms act as qubits
- High-resolution objective (1000 traps)
- 500 reassembled qubits

= Imaging

- Non-State-selective imaging: Resonant fluorescence imaging confirms whether an atom is trapped.
- State-selective imaging: State-selective imaging distinguishes qubit states via fluorescence/no-fluorescence contrast.

780 nm Laser System-

Integrated Laser

- Narrow-linewidth laser matched to Rb D2 line
- Frequency locking included

- Global qubits control via microwave $R(\theta, \varphi)$
- Cooling/imaging with
 780 nm D2 line
- Ground state Raman sideband cooling with 795 nm D1 line
- CZ gate with two-photon (420+1005 nm) excitation to a Rydberg state
- Parallel local addressing of $R_z(\varphi)$, CZ gate
 - A. G. Radnaev *et al.*, arXiv:2408.08288 (2025)

Rydberg CZ gate

- Strong Rydberg interaction (U) causes Rydberg blockade
- High-fidelity CZ gate can be achieved with a time-optimal gate
- Flexible connectivity with swap gates or shutling

D. P. DiVincenzo *et al.*, Science **270**, 255 (1995)
D. Bluvstein *et al.*, Nature **626**, 58-65 (2024)

Timeline/Teams

Laser Distribution Module

- Cooling and repump lasers combined via polarization optics
- Split into 6 MOT beams using **fiber splitter**
- Fiber stretcher reduces MOT interference fringes
 VOA adjusts MOT laser power to prevent saturation
 Modules inside QPU
- Aligned optics to deliver clean MOT beams
 Laser power monitoring
 Ultra-high vacuum glass cell (~10⁻¹² Torr)

